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Geometry, thermodynamics, and finite-size corrections in the critical Potts model
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We establish an intriguing connection between geometry and thermodynamics in the grittaéd Potts
model on two-dimensional lattices, using tipstate bond-correlated percolation mo@@BCPM) representa-
tion. We find that the number of clusteiis) of the QBCPM has an energylike singularity fp# 1, which is
reached and supported by exact results, numerical simulation, and scaling arguments. We also establish that the
finite-size correction to the number of bongll,,), has no constant term and explains the divergence of related
quantities ag]— 4, the multicritical point. Similar analyses are applicable to a variety of other systems.
[S1063-651%99)09612-9

PACS numbegs): 05.50+q, 64.60.Fr, 75.10-b

Percolatior[1] and theg-state Potts moddQPM) [2] are (N +gN,) and its higher cumulantsvhereg is defined be-
related to many interesting problems in mathematics and scigyy, andg=1/2 for a square lattioediverge asj— 4, which
ence and are ideal models for studying critical phenomengs attributable to the onset of logarithmic corrections at the
[1-8]. In recent years, much attention has been paid to unimylticritical point and is understandable from a
versal quantities at or near the percolation point, such as thenormalization-grougRG) picture.
critical existence probabilitf,, or crossing probability4], Here we briefly review the connection between the QPM
finite-size scaling functioni], excess cluster numbei8,7],  and the QBCPM9,11]. In the QPM, each site of the lattice

etc. In a recent paper, Zitt al.[6] calculated the number of G is occupied by a spirs; with spin components-s, —s
clusters per lattice sita in percolation on two-dimensional +1 . . s—1, ands where ii<N, 2s+1=q, andqis an

lattices withN lattice sites and periodic boundary conditionsjnteger. The Hamiltonian of the QPM is given by

(PBC). They found than=n.+b/N+-- -, wheren; isnin

the limit N— andb is a positive universal constant that

may be calculated using conformal field the¢8FT) [7]. In —H/kgT= KUED o(si.s)) + BZ Si- @)

this paper, we consider trepstate bond-correlated percola- '

tion model(QBCPM) [9] on planar lattice$s of N sites and  Here the first summation is a sum over all nearest neighbors,
E bonds, which is equivalent to the QPM @) the numbers  §(s;,sj)=1 or 0 whens;=s; or s;#s;, respectively,K

of bonds and clusters of a subgra@h of G are denoted by =J/kgT>0 is the normalized NN coupling constant, and
N, (G") and N (G"), respectively. In the B=h/kgT is the normalized external magnetic field wkh
QBCPM, as in ordinary percolation, a natural focus on geobeing the Boltzmann constant aficbeing the absolute tem-
metric properties such as cluster number arises. However, thgerature.

system also has nontrivial thermodynamics, impelling an in- Using the subgraph expansion of Ed), Hu has shown
vestigation of the connections between geometry and thermahat phase transitions of the QPM are percolation transitions
behavior. In this work we concentrate on the critical Pottsof the QBCPM, in which a subgrapB’ appears with the
models for definiteness; however, our methods are muchveight

more generally applicable, as pointed out below.

We address this question by investigating the universal m(G',p,q)=p(C)(1—p)E-Nb(C)gN:(C"), 2)
behavior of finite-size correction&S0O. We show by exact o
calculation that whemg#1, the FSC for(N,) is linearly =~ Where p=1—exp(-K); the spontaneous magnetizatid
related to the FSC fofN,), i.e., surprisingly, the number of and the magnetic susceptibilify of the QPM are related to
clusters has an energylike singularity. This is quite differenthe percolation probability> and the mean cluster siZeof
from the caseq=1, which is equivalent to bond random the QBCPM, respectively. These connections ensure that
percolation10] studied by Ziffet al.[6,7]. Numerical simu-  Phase transitions of the .QPM are.percolatlon transitions of
lation, scaling theory for the infinite system, and finite-sizethe QBCPM[9]. The partition function of the QPM at zero
scaling arguments verify and illuminate this conclusion. Themagnetic field may be written as
latter also implies thaf{N,) has no constant finite-size scal-
ing term at criticality, which we verify explicitly for the Ising Zn= 2 [exp(K)— 1]Nb(G’)ch(G’)
model on a square lattice. We also find that the FSC of G’

=exp(KE) Y, m(G',p,q). (3)
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FIG. 1. n—n, as a function of 1/2 for the QBCPM onL X L
square lattices with PB@orus for q=1, 2, 3, and 4.

Here the sum is over a6’ of G [10]. The internal energyJ
and the specific he&, of the QPM are related to the aver-
age number of occupied bongsand the fluctuations of the
number of occupied bonds,,, of the QBCPM, respectively
[9].

Using the Swendsen-Wang algorithrb2], we calculate
the average number of clusters per siteof the critical
QBCPM onL’ XL square lattices with PBC in both horizon-
tal and vertical directions; the number of spin components

is an input parameter taken to be 1, 2, 3, and 4. It should be ~B+(B—BC)CL””—%(,B—EC)ZDLZ’W .

noted thamn in the limitL’, L—oo, denoted byn,, follows

from exact results for the critical Potts free energy on sever

planar lattice$2,13]. We plotn—n, as a function of 1/2 in

Fig. 1 which shows that the data fg=1 are on a linear
curve. The linear least-square fit of these data gings
=0.09807(6) and the slopb=0.884+0.002, which are
consistent with the result of Zifét al.[6,7]. However, results

for q=2, 3, and 4 are quite different, namely the curves for
g=2 have negative slopes, which suggests that the argument

of Ziff et al.[6] to relate the slopé to the average number

of clusters wrapping around the toroidal system is invalid

and signals a new behavior as we show below.

To understand the curves in Fig. 1 fge2, consider the
partition functionZ. of the planar lattice QPM at the critical
point p.=1—e Ke:

Ze=2, [f(q)INe(CIgNe(EN), (4)
GI
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where b,, is the universal FSC and may be derived from
DFSZ[14]. It follows that there is no divergent FSC term for
any C, for q<4. In particular, fon=1 we have

C1=(Nc+gNyy=a;LL" +b(L'/L)+O(1L). (6)
Forq=2,b(1)=0.96773 ... andb(2)=1.0648 ... ; for
g=3, b(1)=1.057B... andb(2)=1.1332.... Since
(Np) is proportional to the internal energy, which has a sin-
gular FSC proportional th.*’” at criticality, Eq.(6) implies
that the FSC for(N.) has an energylike singularity with
amplitude— g times the amplitude ofNy). A similar argu-
ment holds for anyC,,, suggesting thaN.~—gN, in the
sense of FSC, i.e., we can replddg by —gN, to calculate
any leading FSC.

This conclusion also follows from scaling for the infinite
system. The singular part of the free energy per &itmay
be written asf ~A(q)[p—p.(9) 1>~ *@, whereA(1)=0 for
(random percolation anda is the specific heat exponent.
Differentiating fs with respect to g, we find (N)
~—A@)pe(a)[p—pc(a) ]~ “PLL’, showing that(N,) is
energylike to leading order fay+1.

The universalsingula) part of the free energl, is de-
fined above at the critical point. According to finite-size scal-
ing theory[15], F, also extends to large but finite systems
near criticality, with

Fu=LL'f=y¢[(B—BLILL

()

aI|-|ere , v, B, C, and D depend ong, B, CLY", and
Be p ]

DL?" determine the universakingula) terms in the free
energy, internal energy, and specific heat at the critical point,
respectively. Lex=eA?—1, thenx.=f(q). Using the total

partition function Zy and (N.)=q(d/dq)InZy, (Np)
=(d/9x)InZy, we find for 8= B, that
’ ’ qf’(q) 1lv ’
(Ne(G"))=ncLL —J(XC—Jrl)CL +qB’(q), (8
f(q)
Np(G"))=npLL’+ ————CL". 9
(Np(G"))=ny I+ 1) 9

Note that exact results for, are available and,= 1 for the
square lattice Potts model for amy{2]. Therefore,

C1=(Nc+gNy)=a,LL"+qB'(q), (10

Heref(q)zeKC— 1 and is known eXaCtIy for square, planar where a;=n.+gny, which agrees with Eq(6) with b

triangular, and honeycomb latticg8]; for a square lattice,
f(q)= 0. Z. is supposed to factor &= Z,Z,, whereZ,
is a nonuniversal factor and the universal fackyr gives
FSC. Exact results faz,, follow from the Coulomb gas for-
mulas of Di Francesco, Saleur, and ZubBFS2) [14]. The
cumulants C, of N.+gN, are given by C,
=[q(d/99)]"InZ., whereg=g(q)=qf'(q)/f(q) and is 1/2
for the square lattice. Sincg,=Z,(L'/L), FSC’s toC, are
scale invariant. Thus, as [T] for g=1

Cp=a,LL’+b,(L'/L)+O(1L), (5)

=qgB’(q). Note that Eq.(9) also implies that there is no
constant FSC t@Ny).
It follows from finite-size scaling theorl5] that

Cap=(Np) —(Np)?=npLL' +coL 2"+ ... (11)

The CFT result therefore suggests that
(N2)—(Ng)y2=n,LL" +g%c, L%+ - - -, (12
(NcNb) = (Np)(Ne)=nepl L' —ge L+ - (13)
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It follows from Egs.(5), (11), (12), and (13) that a,=n, 0510
+92n,,+2gn,. Now we proceed to test the above predic-
tions.

In [16], the internal energy of the Ising model on a large
L’ XL square lattice at the critical poirit) (T;)/J,, is given

by 0.506 |
—U(T)1d=\2+20/L+d"/L2+ - -, (149 P

0.508

where © = 6,0360,/(6,+ 65+ 6,), J; is the coupling con- oS0ty

stant of Ising spins and is related by J=2J, ,40,, 63, and
0, are elliptic # functions defined by Eq3.14) of [16] and 0502 |
d’ was not determined ifiL6]. We have extended the expan-
sion of —U,(T)/J, up to order 1* and find

0.500 - : ‘
0.00 0.02 0 004 0.06
Lo

U, 2 2
_ J_I = \/E—f— E— FAl{plAz'i' P2A3+ p3A4}+O F
(15
where A1=0,0360,, A,=20,+03+0,, A3=05;—0,, A, solid line represent§=0.5+ s/L%® with s= 0.1273).
= 03+ 04,

FIG. 2. Numericaﬁof square lattice three-state Potts model as
a function of LY*~2 with »=5/6 for three-state Potts model. The

=Cy/LL' =coInL+ny+O(L/L2). Here  c,=2pZ/m

R < 1 1 42-K) =0.21843 ..., ny=3p2B(OR)/KZ+1/(y2+1), and
P1=— Z«l snforl (9 9.2 K=(k) B(OR) is defined by Eq.(4.21) of [16]; for R=1, ny,
=0.4752% . ... Let Cpe=((N2)—(No)?)/LL' and cy,

4 =((NcNp) —(Np){Nc))/LL". For the Ising model(three-

——— KIE(K) |, (16)  state Potts modglwe fit C,p,, Coe, andcy, as linear func-

3w tions of In_L(LY*~2=L%% to obtainn,,, n,, andn,. and
slopes. Co,—Nop, Coc—Nye, and Cpc—Npe for the LXL

B R coshrRl N 1+k? K2(1)— i 17 Ising modbel asba funi:tioncof Inare gl%ow?lcin Fig. @). The
P2=75 =1 sinf#RI 1872 72)’ numerical values o€, andn,, are 0.218) and 0.476), re-

spectively, which are consistent with exact values. The
and p;= m°R/96 with K(k) and E(k) the complete elliptic slopes forc,. and c,. are 0.060) and —0.11(5), respec-
integrals of the first and second kind, respectively. The astively, which are consistent with Eq$12) and (13). ¢,
pect ratio(R) and the modulugk) of the elliptic functions are  —nyp,, Cyc— Ny, andcy.— Ny for three-state Potts model
related to each other Bg=K(k')/K(k) with k' =\1—k%  as a function ofL¥*~2=1%4 are shown in Fig. &); the
Equation (15) shows thatd’ is zero, as predicted by slopes of these curves are 084 0.166), and —0.37),
Eq. (9). Since U|(T.)=2J,+U and U=—(d/9B)InZy/N  respectively, which are also consistent with E@sl)—(13).

=—(z¥2p)p, p=(N,)/E andn=(N.)/N are given by

0.000 -

=5t 5t 1UP1AL+ P2As+ P3Ay) F ' -0.002 | 3::: =
(18) =
 p® b (1 PRI .
e iterolE 9 e h

-0.006
where(Np) and({N.) satisfy Eq.(6). As another test of Eq.
(9), we plot ourp data for a square lattice three-state Potts
model as a function of ¥ ~2=L"%8in Fig. 2, which shows -0.008 |
that the data fit a linear curve with slopg=0.1273
+0.0005. In Fig. 3 we ploh—n. data for the Ising model
and three-state Potts model as a function df fér R 001 00 0.02 004
=L'/L=1 and 2. The solid lines represent E39). The 1L

dotted line representsn— ne=—s/L®%b/L? with b FIG. 3. Numericaln—n, of the L’ XL square lattice Ising
=1.057® ... obtained via[14]. The agreement between model and three-state Potts model as a function bf The solid
the numerical data and our predictions is very good. line represents Eq.(19) for the Ising model with b(1)

From [16] and the connection between the specific heat=0.967 73 ... andb(2)=1.064& . ... Thedotted line repre-
and the bond fluctuation§,,, of the QBCPM[9], we find  sents the equation—n,=—s/L%8+b/L? for the three-state Potts
that at the critical pointp, of the Ising model ¢y, model withs=0.127(3) andb=1.057D.. ...
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6.0 ‘ ‘ ‘ ‘ FIG. 5. p—0.5 andn—n, for the four-state Potts model as a
function of x=L Y2 The solid and dotted lines represemiéx)
a0l Cop Nop ] and —w(x), respectively.
20| o ] p=(Np)/E~0.5+Ax(1—2alnx) "= 0.5+w(x),
2¢ 2¢c (20)
0.0
wherex=L""2 with v=2/3 for the four-state Potts model
40 1 [2], A anda are nonuniversal constants, and the square lattice
oon bulk valuep=0.5 has been used. The FSC part of this result
20 | o 1 includes the effects of the constant term in the scaling rela-
tion for the free energy18]. In Fig. 5, we plot data of
30 ‘ ‘ ‘ ‘ —0.5 andn—n, for the four-state Potts modg¢l3] as a
00 20 40 o, 60 8.0 10.0 . 05 e
(b) L function of x=L""~. Fitting p—0.5 to w(x) of Eq. (20

givesA=0.17£0.01 anda=0.41+0.05. The solid and dot-

FIG. 4. () Cop—Nay, Cac—Nac, aNd Cpc— Ny fOr the ISing  teq Jines in Fig. 5 represemi(x) and —w(x), respectively.
model as a function of Ib, (b) Czp= Nz, CZC__nzé’ and e gince E=2LL’ on the square lattice, Fig. 5 shows that
— Ny for the three-state Potts model as a functio. 6~ “=L"* —w(x) also gives the leading FSC to-n,, which is simi-
lar to the caseq=2 and 3, i.e., we have numerical evidence
for the relationN.~ —gN, whenq=4.

Besides the Potts model, cluster representations are also
useful for understanding critical properties of a model of
hydrogen bonding in water, a dilute Potts model, the)O(
model, quantum spin models, and many otH&49]. Our
methods are useful for understanding finite-size corrections

As g—4, the system approaches a multicritical point.
From a RG point of view, its singular behavior may be un-
derstood in terms of a dilution fiel¢ and temperature field
¢ [17]. Since y~e=(4—q)'? it follows from scaling
theory thatF, will have an expansion in terms with integer
powers ofe along the line of critical points. Thug which is
proportional to theg derivative ofF,, and all higher cumu- '
lantsb,, diverge asq— 4. This agrees with the results of a in these systems.

direct calculation usingj14], including the correct depen- We are indebted to I. Affeck, A. Aharony, J. L. Cardy, M.

dence. For the cylinder geomettyjs finite butb, diverges g Fisher, E. V. lvashkevich, I. Peschel, P. Upton, F. Y. Wu,
for n=2, which is attributable to the vanishing of the leading ;4 R. M. Ziff for useful discussions. This work was sup-
term in the expansion df, in this geometry. ported in part by the National Science Council of the Repub-

For g=4, one cannot derive results for the FSC(M) ¢ of China(Taiwan under Grant No. NSC 88-2112-M-001-
by differentiation. However, extending the scaling calcula—011

tion in [18], we find that to leading order
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