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Geometry, thermodynamics, and finite-size corrections in the critical Potts model
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We establish an intriguing connection between geometry and thermodynamics in the criticalq-state Potts
model on two-dimensional lattices, using theq-state bond-correlated percolation model~QBCPM! representa-
tion. We find that the number of clusters^Nc& of the QBCPM has an energylike singularity forqÞ1, which is
reached and supported by exact results, numerical simulation, and scaling arguments. We also establish that the
finite-size correction to the number of bonds,^Nb&, has no constant term and explains the divergence of related
quantities asq→4, the multicritical point. Similar analyses are applicable to a variety of other systems.
@S1063-651X~99!09612-9#

PACS number~s!: 05.50.1q, 64.60.Fr, 75.10.2b
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Percolation@1# and theq-state Potts model~QPM! @2# are
related to many interesting problems in mathematics and
ence and are ideal models for studying critical phenom
@1–8#. In recent years, much attention has been paid to
versal quantities at or near the percolation point, such as
critical existence probabilityEp or crossing probability@4#,
finite-size scaling functions@5#, excess cluster numbers@6,7#,
etc. In a recent paper, Ziffet al. @6# calculated the number o
clusters per lattice siten in percolation on two-dimensiona
lattices withN lattice sites and periodic boundary conditio
~PBC!. They found thatn5nc1b/N1•••, wherenc is n in
the limit N→` and b is a positive universal constant th
may be calculated using conformal field theory~CFT! @7#. In
this paper, we consider theq-state bond-correlated percola
tion model~QBCPM! @9# on planar latticesG of N sites and
E bonds, which is equivalent to the QPM onG; the numbers
of bonds and clusters of a subgraphG8 of G are denoted by
Nb(G8) and Nc(G8), respectively. In the
QBCPM, as in ordinary percolation, a natural focus on g
metric properties such as cluster number arises. However
system also has nontrivial thermodynamics, impelling an
vestigation of the connections between geometry and the
behavior. In this work we concentrate on the critical Po
models for definiteness; however, our methods are m
more generally applicable, as pointed out below.

We address this question by investigating the unive
behavior of finite-size corrections~FSC!. We show by exact
calculation that whenqÞ1, the FSC for^Nc& is linearly
related to the FSC for̂Nb&, i.e., surprisingly, the number o
clusters has an energylike singularity. This is quite differ
from the caseq51, which is equivalent to bond random
percolation@10# studied by Ziffet al. @6,7#. Numerical simu-
lation, scaling theory for the infinite system, and finite-s
scaling arguments verify and illuminate this conclusion. T
latter also implies that̂Nb& has no constant finite-size sca
ing term at criticality, which we verify explicitly for the Ising
model on a square lattice. We also find that the FSC
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^Nc1gNb& and its higher cumulants~whereg is defined be-
low, andg51/2 for a square lattice! diverge asq→4, which
is attributable to the onset of logarithmic corrections at
multicritical point and is understandable from
renormalization-group~RG! picture.

Here we briefly review the connection between the QP
and the QBCPM@9,11#. In the QPM, each site of the lattic
G is occupied by a spinsi with spin components2s,2s
11, . . . ,s21, ands, where 1< i<N, 2s115q, andq is an
integer. The Hamiltonian of the QPM is given by

2H/kBT5 K(
^ i , j &

d~si ,sj !1B(
i

si . ~1!

Here the first summation is a sum over all nearest neighb
d(si ,sj )51 or 0 when si5sj or siÞsj , respectively,K
5J/kBT.0 is the normalized NN coupling constant, an
B5h/kBT is the normalized external magnetic field withkB
being the Boltzmann constant andT being the absolute tem
perature.

Using the subgraph expansion of Eq.~1!, Hu has shown
that phase transitions of the QPM are percolation transiti
of the QBCPM, in which a subgraphG8 appears with the
weight

p~G8,p,q!5pNb(G8)~12p!E2Nb(G8)qNc(G8), ~2!

where p512exp(2K); the spontaneous magnetizationM
and the magnetic susceptibilityx of the QPM are related to
the percolation probabilityP and the mean cluster sizeS of
the QBCPM, respectively. These connections ensure
phase transitions of the QPM are percolation transitions
the QBCPM@9#. The partition function of the QPM at zer
magnetic field may be written as

ZN5(
G8

@exp~K !21#Nb(G8)qNc(G8)

5exp~KE!(
G8

p~G8,p,q!. ~3!
6491 © 1999 The American Physical Society
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Here the sum is over allG8 of G @10#. The internal energyU
and the specific heatCh of the QPM are related to the ave
age number of occupied bondsp̄ and the fluctuations of the
number of occupied bondsC2b of the QBCPM, respectively
@9#.

Using the Swendsen-Wang algorithm@12#, we calculate
the average number of clusters per siten of the critical
QBCPM onL83L square lattices with PBC in both horizon
tal and vertical directions; the number of spin componentq
is an input parameter taken to be 1, 2, 3, and 4. It should
noted thatn in the limit L8, L→`, denoted bync , follows
from exact results for the critical Potts free energy on sev
planar lattices@2,13#. We plotn2nc as a function of 1/L2 in
Fig. 1 which shows that the data forq51 are on a linear
curve. The linear least-square fit of these data givesnc
50.09807(6) and the slopeb50.88460.002, which are
consistent with the result of Ziffet al. @6,7#. However, results
for q52, 3, and 4 are quite different, namely the curves
q>2 have negative slopes, which suggests that the argum
of Ziff et al. @6# to relate the slopeb to the average numbe
of clusters wrapping around the toroidal system is inva
and signals a new behavior as we show below.

To understand the curves in Fig. 1 forq>2, consider the
partition functionZc of the planar lattice QPM at the critica
point pc512e2Kc:

Zc5(
G8

@ f ~q!#Nb(G8)qNc(G8). ~4!

Here f (q)5eKc21 and is known exactly for square, plan
triangular, and honeycomb lattices@2#; for a square lattice,
f (q)5Aq. Zc is supposed to factor asZc5ZnZu , whereZn
is a nonuniversal factor and the universal factorZu gives
FSC. Exact results forZu follow from the Coulomb gas for-
mulas of Di Francesco, Saleur, and Zuber~DFSZ! @14#. The
cumulants Cn of Nc1gNb are given by Cn
5@q(]/]q)#nlnZc , whereg5g(q)5q f8(q)/ f (q) and is 1/2
for the square lattice. SinceZu5Zu(L8/L), FSC’s toCn are
scale invariant. Thus, as in@7# for q51

Cn5anLL81bn~L8/L !1O~1/L !, ~5!

FIG. 1. n2nc as a function of 1/L2 for the QBCPM onL3L
square lattices with PBC~torus! for q51, 2, 3, and 4.
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where bn is the universal FSC and may be derived fro
DFSZ@14#. It follows that there is no divergent FSC term fo
any Cn for q,4. In particular, forn51 we have

C15^Nc1gNb&5a1LL81b~L8/L !1O~1/L !. ~6!

For q52, b(1)50.967 734 . . . andb(2)51.064 63 . . . ; for
q53, b(1)51.057 79 . . . and b(2)51.133 21 . . . . Since
^Nb& is proportional to the internal energy, which has a s
gular FSC proportional toL1/n at criticality, Eq.~6! implies
that the FSC for̂ Nc& has an energylike singularity with
amplitude2g times the amplitude of̂Nb&. A similar argu-
ment holds for anyCn , suggesting thatNc'2gNb in the
sense of FSC, i.e., we can replaceNc by 2gNb to calculate
any leading FSC.

This conclusion also follows from scaling for the infinit
system. The singular part of the free energy per sitef s may
be written asf s'A(q)@p2pc(q)#22a(q), whereA(1)50 for
~random! percolation anda is the specific heat exponen
Differentiating f s with respect to q, we find ^Nc&
'2A(q)pc8(q)@p2pc(q)#12a(q)LL8, showing that̂ Nc& is
energylike to leading order forqÞ1.

The universal~singular! part of the free energyFu is de-
fined above at the critical point. According to finite-size sc
ing theory @15#, Fu also extends to large but finite system
near criticality, with

Fu5LL8 f u'c@~b2bc!L
1/n#LL8

'B1~b2bc!CL1/n2
1

2
~b2bc!

2DL2/n1•••. ~7!

Here bc , n, B, C, and D depend onq; B, CL1/n, and
DL2/n determine the universal~singular! terms in the free
energy, internal energy, and specific heat at the critical po
respectively. Letx5ebJ21, thenxc5 f (q). Using the total
partition function ZN and ^Nc&5q(]/]q)lnZN , ^Nb&
5(]/]x)lnZN , we find forb5bc that

^Nc~G8!&'ncLL82
q f8~q!

J~xc11!
CL1/n1qB8~q!, ~8!

^Nb~G8!&'nbLL81
f ~q!

J~xc11!
CL1/n. ~9!

Note that exact results fornb are available andnb51 for the
square lattice Potts model for anyq @2#. Therefore,

C15^Nc1gNb&5a1LL81qB8~q!, ~10!

where a15nc1gnb , which agrees with Eq.~6! with b
5qB8(q). Note that Eq.~9! also implies that there is no
constant FSC tôNb&.

It follows from finite-size scaling theory@15# that

C2b5^Nb
2&2^Nb&

25n2bLL81c2L2/n1•••. ~11!

The CFT result therefore suggests that

^Nc
2&2^Nc&

25n2cLL81g2c2L2/n1•••, ~12!

^NcNb&2^Nb&^Nc&5ncbLL82gc2L2/n1•••. ~13!
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It follows from Eqs. ~5!, ~11!, ~12!, and ~13! that a25n2c
1g2n2b12gncb . Now we proceed to test the above pred
tions.

In @16#, the internal energy of the Ising model on a lar
L83L square lattice at the critical point,UI(Tc)/JI , is given
by

2UI~Tc!/JI5A212Q/L1d8/L21•••, ~14!

where Q5u2u3u4 /(u21u31u4), JI is the coupling con-
stant of Ising spins and is related toJ by J52JI ,u2 ,u3, and
u4 are ellipticu functions defined by Eq.~3.14! of @16# and
d8 was not determined in@16#. We have extended the expa
sion of 2UI(Tc)/JI up to order 1/L3 and find

2
UI

JI
5A21

2

L
Q2

2

L3
A1$p1A21p2A31p3A4%1OS 1

L4D ,

~15!

where A15u2u3u4 , A252u21u31u4 , A35u32u4 , A4
5u31u4,

p15
p3R

2 S (
l 51

`
1

sinh4pRl
1

1

9
1

4~22k2!

9p2
K2~k!

2
4

3p2
K~k!E~k!D , ~16!

p25
p3R

2 S (
l 51

`
coshpRl

sinh4pRl
1

11k2

18p2
K2~k!2

1

72D , ~17!

and p35p3R/96 with K(k) and E(k) the complete elliptic
integrals of the first and second kind, respectively. The
pect ratio~R! and the modulus~k! of the elliptic functions are
related to each other byR5K(k8)/K(k) with k85A12k2.

Equation ~15! shows thatd8 is zero, as predicted by
Eq. ~9!. Since UI(Tc)52JI1U and U52(]/]b)lnZN /N
52(zJ/2p) p̄, p̄5^Nb&/E andn5^Nc&/N are given by

p̄5
1

2
1

pcQ

2L
1

pc

2L3 A1$p1A21p2A31p3A4%1OS 1

L3D ,

~18!

n5nc2
pc

2

Q

L
1

b

L2 1OS 1

L3D , ~19!

where^Nb& and ^Nc& satisfy Eq.~6!. As another test of Eq
~9!, we plot ourp̄ data for a square lattice three-state Po
model as a function ofL1/n225L20.8 in Fig. 2, which shows
that the data fit a linear curve with slopes50.1273
60.0005. In Fig. 3 we plotn2nc data for the Ising mode
and three-state Potts model as a function of 1/L for R
5L8/L51 and 2. The solid lines represent Eq.~19!. The
dotted line representsn2nc52s/L0.81b/L2 with b
51.057 79 . . . obtained via@14#. The agreement betwee
the numerical data and our predictions is very good.

From @16# and the connection between the specific h
and the bond fluctuations,C2b , of the QBCPM@9#, we find
that at the critical point pc of the Ising model c2b
-

s-

s

t

5C2b /LL85c2lnL1n2b1O(1/L2). Here c252pc
2/p

50.218 453 . . . , n2b5 1
4 pc

2B(0,R)/KI
211/(A211), and

B(0,R) is defined by Eq.~4.21! of @16#; for R51, n2b

50.475 235 . . . . Let c2c5(^Nc
2&2^Nc&

2)/LL8 and cbc

5(^NcNb&2^Nb&^Nc&)/LL8. For the Ising model~three-
state Potts model!, we fit c2b , c2c , andcbc as linear func-
tions of lnL(L1/n225L0.4) to obtainn2b , n2c , andnbc and
slopes. c2b2n2b , c2c2n2c , and cbc2nbc for the L3L
Ising model as a function of lnL are shown in Fig. 4~a!. The
numerical values ofc2 andn2b are 0.21~8! and 0.47~6!, re-
spectively, which are consistent with exact values. T
slopes forc2c and cbc are 0.06~0! and 20.11(5), respec-
tively, which are consistent with Eqs.~12! and ~13!. c2b
2n2b , c2c2n2c , and cbc2nbc for three-state Potts mode
as a function ofL1/n225L0.4 are shown in Fig. 4~b!; the
slopes of these curves are 0.64~3!, 0.16~6!, and 20.32(7),
respectively, which are also consistent with Eqs.~11!–~13!.

FIG. 2. Numericalp̄ of square lattice three-state Potts model
a function ofL1/n22 with n55/6 for three-state Potts model. Th

solid line representsp̄50.51s/L0.8 with s50.127(3).

FIG. 3. Numericaln2nc of the L83L square lattice Ising
model and three-state Potts model as a function of 1/L. The solid
line represents Eq.~19! for the Ising model with b(1)
50.967 734 . . . andb(2)51.064 63 . . . . The dotted line repre-
sents the equationn2nc52s/L0.81b/L2 for the three-state Potts
model withs50.127(3) andb51.057 79 . . . .
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As q→4, the system approaches a multicritical poin
From a RG point of view, its singular behavior may be u
derstood in terms of a dilution fieldc and temperature field
f @17#. Since c;e5(42q)1/2, it follows from scaling
theory thatFu will have an expansion in terms with intege
powers ofe along the line of critical points. Thusb, which is
proportional to theq derivative ofFu , and all higher cumu-
lants bn diverge asq→4. This agrees with the results of
direct calculation using@14#, including the correcte depen-
dence. For the cylinder geometry,b is finite butbn diverges
for n>2, which is attributable to the vanishing of the leadin
term in the expansion ofFu in this geometry.

For q54, one cannot derive results for the FSC to^Nc&
by differentiation. However, extending the scaling calcu
tion in @18#, we find that to leading order

FIG. 4. ~a! c2b2n2b , c2c2n2c , and cbc2nbc for the Ising
model as a function of lnL, ~b! c2b2n2b , c2c2n2c , and cbc

2nbc for the three-state Potts model as a function ofL2/n225L0.4.
.
-

-

p̄5^Nb&/E'0.51Ax~122alnx!23/450.51w~x!,
~20!

wherex5L1/n22 with n52/3 for the four-state Potts mode
@2#, A anda are nonuniversal constants, and the square lat

bulk valuep̄50.5 has been used. The FSC part of this res
includes the effects of the constant term in the scaling re

tion for the free energy@18#. In Fig. 5, we plot data ofp̄
20.5 andn2nc for the four-state Potts model@13# as a

function of x5L20.5. Fitting p̄20.5 to w(x) of Eq. ~20!
givesA50.1760.01 anda50.4160.05. The solid and dot-
ted lines in Fig. 5 representw(x) and2w(x), respectively.
Since E52LL8 on the square lattice, Fig. 5 shows tha
2w(x) also gives the leading FSC ton2nc , which is simi-
lar to the casesq52 and 3, i.e., we have numerical eviden
for the relationNc'2gNb whenq54.

Besides the Potts model, cluster representations are
useful for understanding critical properties of a model
hydrogen bonding in water, a dilute Potts model, the O(n)
model, quantum spin models, and many others@9,19#. Our
methods are useful for understanding finite-size correcti
in these systems.

We are indebted to I. Affeck, A. Aharony, J. L. Cardy, M
E. Fisher, E. V. Ivashkevich, I. Peschel, P. Upton, F. Y. W
and R. M. Ziff for useful discussions. This work was su
ported in part by the National Science Council of the Rep
lic of China~Taiwan! under Grant No. NSC 88-2112-M-001
011.

FIG. 5. p̄20.5 andn2nc for the four-state Potts model as
function of x5L21/2. The solid and dotted lines representsw(x)
and2w(x), respectively.
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